مقایسه روش های شبکه عصبی بیزین و شبکه عصبی مصنوعی در تخمین رسوبات معلق رودخانه ها (مطالعه موردی: سیمینه رود)
Authors
Abstract:
زمینه و هدف: شبیه سازی و ارزیابی آورد رسوب رودخانه از جمله مسایل مهم در مدیریت منابع آب می باشد. اندازه گیری مقدار رسوب به روش های متداول عموماً مستلزم صرف وقت و هزینه زیادی بوده و گاهی از دقت کافی نیز برخوردار نمی باشد. روش بررسی: در این پژوهش تخمین رسوب رودخانه سیمینه رود واقع در استان آذربایجان غربی، با استفاده از شبکه عصبی بیـزین مورد بررسی قرار گرفته و نتایج آن با روش های مرسـوم هوشمند همچـون شبکه عصبـی مصنوعی مقایسه گردید. پارامتر دبی، دما و میزان مواد جامد محلول در آب به عنوان ورودی و دبی رسوب به عنوان خروجی مدل در مقیاس زمانی ماهانه طی دوره آماری (1383-1354) انتخاب گردید. معیارهای ضریب همبستگی، ریشه میانگین مربعات خطا، ضریب نش ساتکلیف و ضریب بایاس برای ارزیابی و نیز مقایسه عملکرد روش ها مورد استفاده قرار گرفت. یافته ها: نتایج حاصله نشان داد ساختار ترکیبی توانسته با استفاده از سه روش هوشمند مورد بررسی، در تخمین میـزان رسوب نتایج قابل قبولی ارایه نماید. لیکن از لحاظ دقت، مدل شبکه عصبی بیزین با بیش ترین ضریب همبستگی (832/0)، کم ترین ریشه میانگین مربعات خطا (ton/day071/0) و نیز معیار نش ساتکلیف(692/0) و مقدار بایاس(0001/0) در مرحله صحت سنجی در اولویت قرار گرفت. بحث و نتیجه گیری:در مجموع نتایج نشان داد که مدل شبکه عصبی بیزین توانایی بالایی در تخمین مقادیر کمینه و بیشینه از خود نشان داده است.
similar resources
مقایسه روشهای شبکه های عصبی مصنوعی، فازی-عصبی تطبیقی و منحنی سنجه رسوب در برآورد رسوبات معلق رودخانه ها (مطالعه موردی: رودخانه آجی چای)
ارائه راهکاری مناسب جهت برآورد دقیق بار معلق رودخانهها در پروژههای آبی، مهندسی رودخانه و آبیاریکاربردهای فراوانی دارد. به دلیل تأثیر پارامترهای مختلف بر انتقال رسوبات در رودخانهها، تعیین معادلات حاکم برآن مشکل بوده و مدلهای ریاضی نیز در این راستا از دقت کافی برخوردار نیستند. امروزه استفاده از سیستمهایهوش مصنوعی به عنوان راهکاری جدید در تحلیل مسائل آبی، گسترش یافته است. در تحقیق حاضر منطق فازی-ع...
full textکاربرد شبکه عصبی موجک در تخمین رسوبات معلق رودخانهها، مطالعه موردی: رودخانه کشکان-لرستان
شبیهسازی و ارزیابی آورد رسوب رودخانه از جمله مسائل مهم در مدیریت منابع آب میباشد. اندازهگیری مقدار رسوب به روشهای متداول عموماً مستلزم صرف وقت و هزینه زیادی بوده، گاهی از دقت کافی نیز برخوردار نیست. در این پژوهش برای تخمین رسوبات رودخانه کشکان واقع در استان لرستان، از شبکه عصبی موجک استفاده شد و نتایج آن با روشهای مرسوم هوشمند همچون شبکه عصبی مصنوعی مقایسه شد. پارامتر دبی، دما، میزان مواد ج...
full textکاربرد سنجش از دور و شبکه عصبی مصنوعی در تخمین غلظت رسوب معلق رودخانه (مطالعه موردی: رودخانه کارون)
Spectral Reflectance of suspended sediment concentration (SSC) remotely sensed by satellite images is an alternative and economically efficient method to measure SSC in inland waters such as rivers and lakes, coastal waters, and oceans. This paper retrieved SSC from satellite remote sensing imagery using radial basis function networks (RBF). In-situ measurement of SSC, water flow data, as well ...
full textمقایسه روشهای شبکه های عصبی مصنوعی، فازی-عصبی تطبیقی و منحنی سنجه رسوب در برآورد رسوبات معلق رودخانه ها (مطالعه موردی: رودخانه آجی چای)
ارائه راهکاری مناسب جهت برآورد دقیق بار معلق رودخانهها در پروژههای آبی، مهندسی رودخانه و آبیاریکاربردهای فراوانی دارد. به دلیل تأثیر پارامترهای مختلف بر انتقال رسوبات در رودخانهها، تعیین معادلات حاکم برآن مشکل بوده و مدلهای ریاضی نیز در این راستا از دقت کافی برخوردار نیستند. امروزه استفاده از سیستمهایهوش مصنوعی به عنوان راهکاری جدید در تحلیل مسائل آبی، گسترش یافته است. در تحقیق حاضر منطق فازی-ع...
full textتلفیق شبکه عصبی و فازی در برآورد بار رسوبات معلق رودخانه ها (مطالعه موردی؛ بابل رود)
برآورد بار رسوبی یکی از مهمترین مسائلی است که در مدیریت رودخانه ها و مخازن سدها و به طور کلی در پروژه های آبی اهمیت زیادی دارد. تعداد روابط تجربی ارائه شده نشان می دهد که هنوز روش تحلیلی یا تجربی مناسبی برای تخمین صحیح بار رسوبات معلق پیشنهاد نشده است. در مطالعه حاضر به منظور دستیابی به تخمینی نزدیک به واقعیت از میزان حمل رسوبات توسط رودخانه ها، از روش های نوین هوش مصنوعی شامل؛ شبکه عصبی پرسپتر...
My Resources
Journal title
volume 19 issue 2
pages 1- 13
publication date 2017-06-22
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023